Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures.

Identifieur interne : 003606 ( Main/Exploration ); précédent : 003605; suivant : 003607

Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures.

Auteurs : Raja S. Payyavula [États-Unis] ; Benjamin A. Babst ; Matthew P. Nelsen ; Scott A. Harding ; Chung-Jui Tsai

Source :

RBID : pubmed:20040108

Descripteurs français

English descriptors

Abstract

BACKGROUND

Phenylpropanoid-derived phenolic glycosides (PGs) and condensed tannins (CTs) comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known.

RESULTS

Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM), and a negative effect on cell growth (at 10 mM). The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis.

CONCLUSIONS

Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we identified candidate genes for glycosyltransferases that may mediate the glycosylation, and for transporters that mediate the subcellular compartmentalization of sugars and phenolic glycosides. The suspension cells appear to represent a facile system for dissecting the regulation of phenolic carbon partitioning, and in turn, its effects on growth in Populus.


DOI: 10.1186/1471-2229-9-151
PubMed: 20040108
PubMed Central: PMC2808312


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures.</title>
<author>
<name sortKey="Payyavula, Raja S" sort="Payyavula, Raja S" uniqKey="Payyavula R" first="Raja S" last="Payyavula">Raja S. Payyavula</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA. rpayyavula@warnell.uga.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Babst, Benjamin A" sort="Babst, Benjamin A" uniqKey="Babst B" first="Benjamin A" last="Babst">Benjamin A. Babst</name>
</author>
<author>
<name sortKey="Nelsen, Matthew P" sort="Nelsen, Matthew P" uniqKey="Nelsen M" first="Matthew P" last="Nelsen">Matthew P. Nelsen</name>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:20040108</idno>
<idno type="pmid">20040108</idno>
<idno type="doi">10.1186/1471-2229-9-151</idno>
<idno type="pmc">PMC2808312</idno>
<idno type="wicri:Area/Main/Corpus">003342</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003342</idno>
<idno type="wicri:Area/Main/Curation">003342</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003342</idno>
<idno type="wicri:Area/Main/Exploration">003342</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures.</title>
<author>
<name sortKey="Payyavula, Raja S" sort="Payyavula, Raja S" uniqKey="Payyavula R" first="Raja S" last="Payyavula">Raja S. Payyavula</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA. rpayyavula@warnell.uga.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Babst, Benjamin A" sort="Babst, Benjamin A" uniqKey="Babst B" first="Benjamin A" last="Babst">Benjamin A. Babst</name>
</author>
<author>
<name sortKey="Nelsen, Matthew P" sort="Nelsen, Matthew P" uniqKey="Nelsen M" first="Matthew P" last="Nelsen">Matthew P. Nelsen</name>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Benzyl Alcohols (metabolism)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Culture Media (MeSH)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glucosides (MeSH)</term>
<term>Glycosides (metabolism)</term>
<term>Glycosylation (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Populus (cytology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>RNA, Plant (genetics)</term>
<term>Tannins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>Alcools benzyliques (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Glucosides (MeSH)</term>
<term>Glycosylation (MeSH)</term>
<term>Hétérosides (métabolisme)</term>
<term>Milieux de culture (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (cytologie)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Tanins (métabolisme)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Benzyl Alcohols</term>
<term>Glycosides</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcools benzyliques</term>
<term>Hétérosides</term>
<term>Populus</term>
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cells, Cultured</term>
<term>Culture Media</term>
<term>Expressed Sequence Tags</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Glucosides</term>
<term>Glycosylation</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Cellules cultivées</term>
<term>Glucosides</term>
<term>Glycosylation</term>
<term>Milieux de culture</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Phenylpropanoid-derived phenolic glycosides (PGs) and condensed tannins (CTs) comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM), and a negative effect on cell growth (at 10 mM). The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we identified candidate genes for glycosyltransferases that may mediate the glycosylation, and for transporters that mediate the subcellular compartmentalization of sugars and phenolic glycosides. The suspension cells appear to represent a facile system for dissecting the regulation of phenolic carbon partitioning, and in turn, its effects on growth in Populus.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20040108</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures.</ArticleTitle>
<Pagination>
<MedlinePgn>151</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-9-151</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Phenylpropanoid-derived phenolic glycosides (PGs) and condensed tannins (CTs) comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM), and a negative effect on cell growth (at 10 mM). The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we identified candidate genes for glycosyltransferases that may mediate the glycosylation, and for transporters that mediate the subcellular compartmentalization of sugars and phenolic glycosides. The suspension cells appear to represent a facile system for dissecting the regulation of phenolic carbon partitioning, and in turn, its effects on growth in Populus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Payyavula</LastName>
<ForeName>Raja S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA. rpayyavula@warnell.uga.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Babst</LastName>
<ForeName>Benjamin A</ForeName>
<Initials>BA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nelsen</LastName>
<ForeName>Matthew P</ForeName>
<Initials>MP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harding</LastName>
<ForeName>Scott A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001592">Benzyl Alcohols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005960">Glucosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006027">Glycosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4649620TBZ</RegistryNumber>
<NameOfSubstance UI="C005696">salicin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>FA1N0842KB</RegistryNumber>
<NameOfSubstance UI="C010631">salicyl alcohol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001592" MajorTopicYN="N">Benzyl Alcohols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005960" MajorTopicYN="N">Glucosides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006027" MajorTopicYN="N">Glycosides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006031" MajorTopicYN="N">Glycosylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>10</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>12</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20040108</ArticleId>
<ArticleId IdType="pii">1471-2229-9-151</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-9-151</ArticleId>
<ArticleId IdType="pmc">PMC2808312</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Syst Ecol. 2000 Aug 1;28(7):619-632</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Sep;5(9):380-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2389-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jan 4;277(1):586-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11641410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Oct;9(10):1825-1841</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12237349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Nov;216(1):107-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12430019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Jan;18(1):53-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Jul;29(7):1565-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12921436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 7;278(45):44320-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12954621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Jun;7(3):235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):9-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Jun;8(3):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Dec;25(12):1475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16137933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Nov;10(11):542-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):946-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 May;141(1):196-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:567-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Jul;32(7):1415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Oct;32(10):2269-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17001533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):188-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:347-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Feb;227(3):565-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Oct;68(3):289-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18618272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):22020-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1995 Sep;21(9):1245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24234624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Jun;111(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Feb;10(2):267-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490749</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Babst, Benjamin A" sort="Babst, Benjamin A" uniqKey="Babst B" first="Benjamin A" last="Babst">Benjamin A. Babst</name>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<name sortKey="Nelsen, Matthew P" sort="Nelsen, Matthew P" uniqKey="Nelsen M" first="Matthew P" last="Nelsen">Matthew P. Nelsen</name>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Payyavula, Raja S" sort="Payyavula, Raja S" uniqKey="Payyavula R" first="Raja S" last="Payyavula">Raja S. Payyavula</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003606 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003606 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20040108
   |texte=   Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20040108" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020